No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations.

نویسنده

  • Jianke Yang
چکیده

Saddle-node bifurcations arise frequently in solitary waves of diverse physical systems. Previously it was believed that solitary waves always undergo stability switching at saddle-node bifurcations, just as in finite-dimensional dynamical systems. Here we show that this is not true. For a large class of generalized nonlinear Schrödinger equations with real or complex potentials, we prove that stability of solitary waves does not switch at saddle-node bifurcations. This analytical result is confirmed by numerical examples where both soliton branches are stable at saddle-node bifurcations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditions and Stability Analysis for Saddle-Node Bifurcations of Solitary Waves in Generalized Nonlinear Schrödinger Equations

Saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions are analyzed. First, general conditions for these bifurcations are derived. Second, it is shown analytically that the linear stability of these solitary waves does not switch at saddle-node bifurcations, which is i...

متن کامل

Classification of Solitary Wave Bifurcations in Generalized Nonlinear Schrdinger Equations

Bifurcations of solitary waves are classified for the generalized nonlinear Schrödinger equations with arbitrary nonlinearities and external potentials in arbitrary spatial dimensions. Analytical conditions are derived for three major types of solitary wave bifurcations, namely, saddle-node, pitchfork, and transcritical bifurcations. Shapes of power diagrams near these bifurcations are also obt...

متن کامل

Stability switching at transcritical bifurcations of solitary waves in generalized nonlinear Schrödinger equations

a r t i c l e i n f o a b s t r a c t Linear stability of solitary waves near transcritical bifurcations is analyzed for the generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions. Bifurcation of linear-stability eigenvalues associated with this transcritical bifurcation is analytically calculated. Based on this e...

متن کامل

Stability analysis for pitchfork bifurcations of solitary waves in generalized nonlinear Schrdinger equations

Linear stability of both sign-definite (positive) and sign-indefinite solitary waves near pitchfork bifurcations is analyzed for the generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions. Bifurcations of linear-stability eigenvalues associated with pitchfork bifurcations are analytically calculated. Based on thes...

متن کامل

Stability in H 1 of the Sum of K Solitary Waves for Some Nonlinear Schrödinger Equations

In this article we consider nonlinear Schrödinger (NLS) equations in R for d = 1, 2, and 3. We consider nonlinearities satisfying a flatness condition at zero and such that solitary waves are stable. Let Rk(t, x) be K solitary wave solutions of the equation with different speeds v1, v2, . . . , vK . Provided that the relative speeds of the solitary waves vk − vk−1 are large enough and that no i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012